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1  |  INTRODUC TION

In any ecosystem, large individuals are typically more rare than small 
individuals. This fundamental feature of ecosystems leads to a re-
markably common pattern in which relative abundance declines with 
individual body size, generating the individual size distribution (ISD), 
also called the community size spectrum (Platt & Denman,  1977; 
Sprules et  al.,  1983; White et  al.,  2008). Understanding how body 
sizes are distributed has been a focus in ecology for over half a century 
(Kerr, 1974; Peters & Wassenberg, 1983; Sheldon & Parsons, 1967), in 

part because body size distributions reflect fundamental measures of 
ecosystem structure and function, such as trophic transfer efficiency 
(Kerr & Dickie, 2001; Perkins et al., 2019; White et al., 2007). Individual 
size distributions are also predicted as a result of physiological limits 
associated with body size, thereby emerging from predictions of met-
abolic theory and energetic equivalence (Brown et al., 2004).

More formally, the ISD can be modelled as a probability density 
function with a single free parameter �:

(1)f(x) = Cx
�, xmin ≤ x ≤ xmax
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Abstract
1.	 A fundamental pattern in ecology is that smaller organisms are more abundant 

than larger organisms. This pattern is known as the individual size distribu-
tion (ISD), which is the frequency distribution of all individual body sizes in an 
ecosystem.

2.	 The ISD is described by a power law and a major goal of size spectra analyses is 
to estimate the exponent of the power law, λ. However, while numerous methods 
have been developed to do this, they have focused almost exclusively on estimat-
ing λ from single samples.

3.	 Here, we develop an extension of the truncated Pareto distribution within the 
probabilistic modelling language Stan. We use it to estimate multiple λs simulta-
neously in a hierarchical modelling approach.

4.	 The most important result is the ability to examine hypotheses related to size 
spectra, including the assessment of fixed and random effects, within a single 
Bayesian generalized mixed model. While the example here uses size spectra, the 
technique can also be generalized to any data that follow a power law distribution.
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where x is the body size (e.g. mass or volume) of an individual, xmin is the 
smallest possible individual and xmax is the largest possible individual. C 
is a constant equal to:

This model is also known as the bounded power law or trun-
cated Pareto distribution. The term ‘bounded’ or ‘truncated’ refers 
to the minimum xmin and maximum xmax possible body sizes (Edwards 
et al., 2017; White et al., 2008).

A compelling feature of size spectra is that λ may vary little 
across ecosystems as a result of physiological constraints that 
lead to size-abundance patterns more broadly. Metabolic scaling 
theory predicts � + 1 =

log10�

log10�
− 3∕4, where � is trophic transfer ef-

ficiency in the food web and � is the mean predator–prey mass 
ratio (Reuman et al., 2008). The value of − 3∕4 is the scaling co-
efficient of metabolic rate and mass (0.75) (Brown et  al.,  2004), 
and as a result, values of λ have been used to estimate metabolic 
scaling across ecosystems (Perkins et  al.,  2018, 2019; Reuman 
et al., 2008). Values of ~−2 represent a reasonable first guess of 
expected ISD exponents, with values of ranging from −1.2 to −2 
appearing in the literature (Andersen & Beyer,  2006; Blanchard 
et al., 2009; Pomeranz et al., 2022).

Whether λ represents a fixed or variable value is debated, but 
it varies among samples and ecosystems (Blanchard et  al.,  2009; 
Perkins et al., 2018; Pomeranz et al., 2022). It is often described by 
its connection with the steepness of log–log plots of size spectra, 
with more negative values (i.e. ‘steeper’) indicating lower abundance 
of large relative to small individuals, and vice versa. These patterns 
of size frequency are an emergent property of demographic pro-
cesses (e.g. age-dependent mortality), ecological interactions (e.g. 
size-structured predation, trophic transfer efficiency) and physio-
logical constraints (e.g. size-dependent metabolic rates; Andersen & 
Beyer, 2006; Muller-Landau et al., 2006; White et al., 2008). As a re-
sult, variation in λ across ecosystems or across time can indicate fun-
damental shifts in community structure or ecosystem functioning. 
For example, overfishing in marine communities has been detected 
using the size spectrum in which λ was steeper than expected, indi-
cating fewer large fish than expected (Jennings & Blanchard, 2004). 
Shifts in λ have also been used to document responses to acid mine 
drainage in streams (Pomeranz et  al.,  2019), land use (Martínez 
et al., 2016), resource subsidies (Perkins et al., 2018) and tempera-
ture (O'Gorman et al., 2017).

Given the ecological information it conveys, the data required to 
estimate size spectra—a vector of individual body sizes—are decep-
tively simple. As long as the body sizes are collected systematically 
and without bias towards certain sizes, there is no need to know 
any more ecological information about the data points (e.g. trophic 
position, age, abundance). However, the statistical models used 

to estimate λ are diverse. Edwards et al.  (2017) documented eight 
methods. Six involved binning, in which the body sizes are grouped 
into size bins (e.g. 2–50 mg, 50–150 mg, etc.) and then counted, gen-
erating values for abundance within each size bin. Binning and log 
transformation allows λ to be estimated using simple linear regres-
sion. Unfortunately, the binning process also removes most of the 
variation in the data, collapsing information from 1000s of individ-
uals into just six or so bins. Doing so can lead to inaccurate values 
of λ, sometimes drastically so (Goldstein et  al.,  2004; Pomeranz 
et al., 2024; White et al., 2008).

An improved alternative to binning and linear regression is to fit 
the body size data to a power law probability distribution (Edwards 
et  al.,  2017, 2020; White et  al.,  2008). This method uses all raw 
data observations directly to estimate λ using the maximum likeli-
hood estimation method (Edwards et al., 2017). In addition to es-
timating size spectra of single samples, ecologists have used this 
method to examine how λ varies across environmental gradients 
(Perkins et al., 2019; Pomeranz et al., 2022). However, these analy-
ses typically proceed in two steps. First, λ is estimated individually 
from each collection (e.g. each site or year, etc.). Second, the es-
timates are used as response variables in a linear model to exam-
ine how they relate to corresponding predictor variables (Edwards 
et al., 2020). We refer to this as the ‘two-step’ approach. A down-
side to the two-step approach is that it treats body sizes (and 
subsequent λs) as independent samples, even if they come from 
the same site or time. It also removes information on sample size 
(number of individuals) used to derive λ. As a result, the approach 
not only separates the data generation model from the predictor 
variables but also it is unable to take advantage of partial pooling, in 
which group-level estimates exhibit shrinkage towards each other 
(Gelman et al., 2012).

Here, we develop a Bayesian modelling framework that uses 
the truncated Pareto distribution to estimate λ in response to both 
fixed and random predictor variables. The primary benefit of this ap-
proach is that it combines the data generation process and the linear 
(or non-linear) model into a single generalized linear (or non-linear) 
mixed model. The model extends the maximum likelihood approach 
developed by Edwards et al. (2020) to allow for a flexible hierarchical 
structure, including partial pooling, within the modelling language 
Stan (Stan Development Team, 2022).

2  |  METHODS

2.1  |  Translating to Stan

Stan is a probabilistic modelling language that estimates Bayesian 
posteriors using Hamiltonian Monte Carlo (Stan Development 
Team, 2022). It does not contain the truncated Pareto described in 
Equation  2, so we added it as a user-defined log probability den-
sity function (lpdf) in rstan (Annis et al., 2017; Stan Development 

(2)C =

⎧
⎪
⎨
⎪
⎩

�+1

x�+1max−x�+1
min

, �≠ −1

1

logxmax− logxmin

, �= −1
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Team, 2022) (Supporting Information S1). The lpdf was slightly modi-
fied as described in S.1.4 of Edwards et al. (2020) to contain a term 
for the count of each body size. In data sets with individual body 
sizes, counts will be a simple constant with a value of 1. However, 
if a sample of body sizes is x = {1.2, 1.2, 1.5, 2.8}, then these can 
be re-formatted to include a vector for all unique x values {1.2, 1.5, 
2.8} and a vector for their counts = {2,1,1}, where counts can also be 
non-integers. In large data sets (e.g. >500 individuals or so), adding 
a vector for counts can greatly improve the model fitting time (war-
mup + sampling, Supporting Information S2).

Additionally, adding counts (whether integer or non-integer) is 
useful for combining body size data sets that are collected with differ-
ent methods (Supporting Information S2). For example, in freshwa-
ter streams, macroinvertebrates are often collected using samplers 
that cover 0.09 m2. Fish in the same streams are often collected 
over a much larger area, such as electrofishing a 5-m wide stream 
for 100 m in length, yielding a sample area of 5 × 100 = 500 m2. An 
individual macroinvertebrate of, say, 0.01 mg and an individual fish 
of, say, 1000 mg would each get a count of 1 in their respective data 
sets. But that would not reflect their density in the food web. On 
a m2 basis, the macroinvertebrate has a density of 1∕0.09 = 11m2, 
but the fish's count (or density) should be 1

500
= 0.002m2. The choice 

of units for the counts is not trivial. For example, counts per m2 will 
have different confidence intervals than counts per mm2 or per km2 
for λ (see S.1.5 in Edwards et  al.,  2020). We explore this in more 
depth in Supporting Information S2.

When body sizes are collected from the same sampling method 
and are not tallied or binned, all counts equal 1. If data are binned, 
an alternative approach, such as the MLEbin method, is appropriate 
(Edwards et al., 2020).

Converting Equation 2 into Stan allows for Bayesian estimation 
of λs using generalized (non)-linear mixed models. For example, an 
intercept-only model would look like this:

where xi is the ith individual body size, f
(
x; �, xmin, xmax, counts

)
 is the 

truncated Pareto distribution, λ is the size spectrum parameter (also 
referred to as the exponent), xmin and xmax are as described above and 
countsi are the tally or density of the ith body size x in a data set. The 
parameter � is the intercept with a prior probability distribution. In this 
case, we specified a normal prior since λ is continuous and can be pos-
itive or negative.

For cases where the goal is to estimate changes in λ across space 
or time, the simple model above can be expanded to include predic-
tors and/or varying intercepts and slopes:

where xij is the ith body size from group j. The groups might represent 
j sites, j experimental units or j times. The xij body sizes are distributed 
as a truncated Pareto with an unknown �j, corresponding to the size 
spectrum parameter for each j group, along with group specific xminj

 
and xmaxj

. The linear model for �j contains an intercept �, a slope �, a 
continuous predictor zj and a varying intercept for each group �j. In this 
example, prior distributions are Normal for �, � and �j. Parameters � and 
� require priors for their respective means �� and �� and standard devi-
ations �� and ��. The varying intercept �j has a mean = 0, and a standard 
deviation �j with its own Exponential hyperprior with parameter � . 
The literature on prior choice is broad and active (Banner et al., 2020; 
Wesner & Pomeranz, 2021), particularly for priors on hyperparameters 
like �j (Aguilar & Bürkner, 2023; Gelman, 2006). We specify prior dis-
tributions here for clarity, but users should choose prior distributions 
that reflect prior knowledge. An example of checking priors with the 
prior predictive distribution and prior sensitivity is in the Supporting 
Information S4.

2.2  |  Testing the models

2.2.1  |  Parameter recovery from simulated data

To ensure the models could recover known parameter values, we set 
j = 1, 2, …, 7 equally spaced λ values from −2.4 to −1.2. We then simu-
lated K = 1000 data sets for each of the seven λs from a bounded 
power law using the inverse cumulative density function:

where xijk is the ith individual body size from the jth value of �j for the 
kth model run (including new data simulation for each run). The vari-
able uijk is a unique draw from a Uniform(0, 1) distribution, and all other 
variables are the same as defined above. We set xmin = 1, xmax = 1000 
and simulated 300 body sizes (i = 1,2,3, …, 300) for each j and k. To gen-
erate counts, we rounded each simulated value to the nearest 0.001 
and tallied them. This generated only a small number of counts >1 (10 
out of 300 body sizes). This approach was chosen to demonstrate the 
use of counts. For a more detailed discussion of counts, see Supporting 
Information S2.

(3)xi ∼ f
(
x; �, xmin, xmax, countsi

)

(4)� = �

(5)� ∼ Normal(�, �)

(6)xij ∼ f
(
x; �j , xminj

, xmaxj
, countsij

)

(7)�j = � + �zj + �j

(8)� ∼ Normal
(
�� , ��

)

(9)� ∼ Normal
(
�� , ��

)

(10)�j ∼ Normal
(
0, � j

)

(11)� j ∼ Exponential(�)

(12)xijk =

⎧
⎪
⎨
⎪
⎩

�
uijkx

(�j+1)
max +

�
1−uijk

�
x
(�j+1)
min

� 1

(�j+1) , �≠ −1

xu
max

x1−u
min

, �= −1
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Individual lambdas
After simulating the data, we estimated the λ values in three ways. 
First, we fit separate intercept-only models (Equation 3) to each sim-
ulated data set. This represents the common procedure of estimat-
ing λs independently before using them in later analyses (e.g. Arranz 
et al.  (2019); Pomeranz et al.  (2022)). Second, we fit a single fixed 
effects model of the form:

where � is the intercept representing the reference value of λ (in this 
case it is −2.4), �m is the coefficient for the m = 1, 2, … 6 contrasts be-
tween the reference λ and �m, z1−6ijk are the covariates representing the 
six groups containing � = { -2.2, -2, -1.8, -1.6, -1.4, -1.2}. All other 
parameters and data are as described above. Third, we fit a varying 
intercepts model of the form:

where �jk are j deviations from the grand intercept � for each k simula-
tion, with priors and hyperpriors as described in Equations 10 and 11.

The procedures above resulted in 9000 total model runs (7000 
for the separate λ estimates plus 1000 each for the fixed and vary-
ing intercept models). Each model run includes newly simulated 
data from Equation 12. To assess how well the models captured the 
known λs, we estimated coverage and bias for each λ. For coverage, 
we generated 95% credible intervals (CrI) across each of the model 
runs and calculated the proportion of those CrIs that contained the 
known λ value. For bias, we calculated the difference between the 
posterior median of λ and the known λ across each model run.

Sample size and size range
We examined sensitivity to sample size (number of individual body 
sizes) across two λ values (−2, −1.6). For each λ, we simulated 30, 
100, 300 or 1000 individuals. Each data set was fit using separate 
intercept-only models. We then repeated this process (data simula-
tion and model fitting) K = 1000 times to estimate bias and coverage 
as described above.

In addition to sample size, we examined sensitivity to the size 
range, which can affect interpretations of λ (Sprules & Barth, 2016). 
To do this, we again set λ to −2 or −1.6 and then simulated n = 300 
individuals, varying xmin and xmax so that they contained 1, 2, 3, 4 or 
5 orders of magnitude in range (i.e. xmin = 1 & xmax = 10∕100∕1000, 
etc.). For each size range, we repeated the data simulation and model 
fitting 1000 times to estimate bias and coverage. We also estimated 
precison as the range between the lowest and highest λ estimates 
across each model run.

Linear variation in λ across samples
We simulated a linear regression model with a single continuous pre-
dictor z such that

This contains a known intercept � = -1.2 and a slope � = -0.05 . 
The predictor z ranged from −1 to 1, with 10 equally spaced inter-
vals. Values for � and � were chosen to keep λ within typical ranges 
of −1 to −2 across the predictors. After obtaining the 10 λ values (one 
for each value of z), we simulated 300 individuals from each λ using 
Equation  12 and setting xmin = 1 and xmax = 1000. The regression 
was fit using Equations 6–10, but without the varying intercept �j. 
We repeated this procedure (data simulation and model fitting) 1000 
times (see Section 2.3) and checked for parameter recovery, bias and 
coverage as described above.

Benefit of partial pooling and priors
Using hierarchical Bayesian models has the benefit of improv-
ing λ and regression parameter estimates with partial pooling 
and informative priors. These can be especially important when 
data from different times or places have different sample sizes. 
To demonstrate this, we modified the linear regression described 
above to include 12 values of z, one of which was an ‘outlier’ in 
which � = -1.1 when z = 2.5. According to the regression equation, 
� should actually equal −2.5 when z = 2.5. After estimating the 
λs, we again simulated n = 300 individuals from each lambda with 
xmin = 1 and xmax = 1000 . However, for the outlier, we limited the 
number of individuals to n = 50. This mimics a situation in which an 
outlier is potentially due to a low sample size, a scenario for which 
partial pooling can be particularly effective (McElreath, 2020, p. 
413). The purpose of this exercise is not to reflect any particular 
sampling scheme, but to demonstrate the importance of partial 
pooling and priors.

We used four techniques to estimate the relationship between z 
and λ. First, we used the two-step process to (1) individually estimate 
each lambda and (2) fit a Gaussian Bayesian linear regression be-
tween the between z and the separately estimated λs. This is akin to 
a no-pooling regression, in which no information about sample size 
or uncertainty in λ is accounted for in the λ estimates. Second, we fit 
the same regression but added measurement error for λ. This allows 
for weighting the response by the standard deviation of λs, such that 
the linear model has the form:

where each �j has mean �true,j and standard deviation sdj and �true,j is 
modelled as a linear function of z with an intercept � and slope �.

Third, we fit a linear mixed model with varying intercepts as de-
scribed above, but with weak priors (� ∼ N( − 1.5,1), � ∼ N(0,0.5) , 
�j ∼ Exponential(1)). This model demonstrates partial pooling, in 

(13)xijk ∼ f
(
xjk; �jk, xminjk

, xmaxjk
, countsijk

)

(14)�jk = � + �1z1ijk + … + �6z6ijk

(15)xijk ∼ f
(
xk ; �jk, xminjk

, xmaxjk
, countsijk

)

(16)�jk = � + �jk

(17)� = − 1.2 − 0.05z

(18)�j ∼ Normal
(
�true,j , sdj

)

(19)�true,j = � + �z
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which the individual lambda estimates exhibit shrinkage towards the 
mean, particularly for the sample with 50 individuals. Additionally, 
the regression parameters (�, �) should be less influenced by 
the outlier compared to the first model. Finally, we fit a model 
with both varying intercepts and strong priors (� ∼ N( − 1.5,0.1), 
� ∼ N( − 1,0.02), �j ∼ Exponential(1)).

2.3  |  Model fitting

Because the truncated Pareto pdf as described here is not 
available in rstan, we built an R package, isdbayes (Wesner 
& Pomeranz,  2023), to integrate it into rstan using brms in R 
(Bürkner,  2018; R Core Team,  2020). The main benefit of brms 
is that it fits Bayesian models in rstan using common R mod-
elling syntax. For example, this linear regression in R, lm(y 
~ x, data = data) becomes Bayesian using brm(y ~ x, 

data = data, …), where brm will translate the model to rstan 
for MCMC sampling. The dots ‘…’ indicate additional model speci-
fications for the likelihood, priors, iterations, chains, etc. A short 
tutorial on using isdbayes is available at https://​github.​com/​
jswes​ner/​isdbayes.

We specified each of the above models in brms, with the trun-
cated Pareto added from the isdbayes package. Posteriors were 
explored in rstan (Stan Development Team,  2022) using four 
chains each with 2000 iterations for each model run. Two excep-
tions were the fixed and varying intercept models in Figure 1. For 
those, we specified two chains each with 2000 iterations. These 
values are lower than the default four chains with 2000 iterations 
rstan and brms, but were chosen for computational efficiency. 
In a separate experiment (Supporting Information S3), we re-ran a 
subset of those models with four chains and 2000 iterations and 
found no differences in the outcome. All models converged with 
Rhats < 1.01. Assessments of prior influence and model checking 
are demonstrated in Supporting Information  S4. In particular, for 
model checking, we use simulations from the posterior predictive 
distributions. These simulations can check how well the model re-
sembles the raw data. Strong deviations from raw data may indi-
cate poor model specification or may indicate deviation from the 
assumption of the power law.

3  |  RESULTS

3.1  |  Individual lambdas

The three methods (separate models, fixed effects and varying inter-
cepts) recaptured the true λ values (Figure 1) with no apparent evi-
dence of bias. For example, mean bias ranged from −0.01 to 0.008, 
but all standard deviations included zero (Table 1). Similarly, cover-
age ranged from 0.93 to 0.96 with a grand mean of 0.95, indicating 
similarity to the nominal coverage of 0.95 (Table 1).

3.2  |  Sample size and size range

Coverage ranged from 0.93 to 0.96 across sample sizes (Figure 2a), 
indicating good statistical coverage even at low sample sizes. 
However, precision increased with sample size. At n = 1000 and 
� = -1.6, the range of mean λ estimates (largest minus smallest λ) 
was 0.13. By comparison, it was 0.9 at n = 30 (Figure 2a). In addition, 
at n = 30, there was a slight negative bias of 0.03 units compared to 
the true λ (though the standard deviations all covered the true λ). 
This bias disappeared when n > = 100 individuals (Figure 2).

Coverage was also consistent across size ranges, achieving nom-
inal coverage even at size ranges of 1 order of magnitude (Figure 2b). 
There was also no indication of bias, with mean λ estimates ranging 
from −0.002 to −0.007 units away from the true λ and standard de-
viations including 0. However, precision was lower when body sizes 
ranged 1 order of magnitude (range of estimates = 0.7 and 0.6 units 
for � = -2 and −1.6, respectively). Precision declined to ~0.4 and 
~0.3 at body size ranges of two or more orders of magnitude and 
remained relatively stable (Figure 2b).

3.3  |  Regression

Coverage for the intercept (�) and slope (�) parameters was 95% 
(Table  2, Figure  3). Bias was small for both parameters, averaging 
−0.0003 for � and -3e-06 for �, indicating good parameter recovery.

3.4  |  Benefit of partial pooling and priors

Without partial pooling or informative priors, the two-step method 
was heavily influenced by the outlier, yielding a slope of −0.03 (95% 
CrI: −0.1 to 0.04; Figure 4a). While the credible interval contains the 
true slope (−0.1), there is high uncertainty in both the slope value 
and its sign. For example, there was only a 0.77 probability of a nega-
tive slope (and a 0.23 probability of a positive slope). Incorporating 
measurement error for λ made little difference, with nearly identical 
values of the regression parameters (Figure 4b).

Fitting the same data with a single truncated Pareto linear mixed 
effects model reduced the influence of the outlier, yielding a slope 
of −0.06 (−0.1 to 0), 50% closer to the true slope of −0.1 than the 
two-step model (Figure  4c). In addition, this model more reliably 
captured the correct sign, with a 0.96 probability of a negative slope. 
Adding strong priors on the slope and intercept parameters further 
improved the estimate (Figure 4d), with a 0.99 probability of a neg-
ative slope.

In addition to improving parameter estimates, the λ estimates 
themselves are improved in the partially pooled models (Figure 4c,d). 
For example, in the two-step method, λ in the outlier is estimated 
−1.1 (Figure  4a), but it is reduced to ~−1.34 with partial pooling 
(Figure 4c,d). Partial pooling has a minimal effect on the other λs due 
to their larger underlying sample size.
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(a) Separate models (b) Fixed predictor (c) Varying intercepts
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4  |  DISCUSSION

The most important result of this work is the ability to analyse in-
dividual size distributions (ISDs) using fixed and random predictors 
in a hierarchical model. Our approach allows ecologists to test hy-
potheses about size spectra while avoiding the pitfalls of a two-step 
process in which � is estimated individually for each sample and the 
results are then used as response variables in linear or non-linear 
models. The generalized mixed model with a bounded truncated 
Pareto merges these steps, linking the data generation process (e.g. 
individual body sizes) with the model predictors. This permits the 
use of prior probabilities and hierarchical structure on regressions of 
ISDs in a single analytical framework.

The ability to incorporate prior information using Bayesian up-
dating has two practical advantages. First, adding informative prior 
distributions can improve model fit by limiting the MCMC sampler to 
reasonable sampling space. In other words, it would not be sensible 
to estimate the probability that � is −1234 or − 9. Without informa-
tive priors, those values (and more extreme values) are considered 
equally likely and hence waste much of the algorithm's sampling ef-
fort on unlikely values (Wesner & Pomeranz, 2021).

Second, and most importantly, ecologists have much prior in-
formation on the values that � can take. For example, global analysis 

of phytoplankton reveals values of −1.75, consistent with predic-
tions based on sublinear scaling of metabolic rate with mass of −3/4 
(Perkins et al., 2019). Alternatively, Sheldon's conjecture suggests 
that λ is −2.05 (Andersen & Beyer, 2006), a value reflecting iso-
metric scaling of metabolic rate and mass, with support in pelagic 
marine food webs (Andersen & Beyer,  2006). However, benthic 
marine systems typically have shallower exponents (e.g. ~ −1.4; 
Blanchard et al. (2009)), similar to those in some freshwater stream 
ecosystems (~ −1.25, Pomeranz et  al.  (2022)). While the causes 
of these deviations from theoretical predictions are debated, it is 
clear that values of λ are restricted to a relatively narrow range 
between about −2.05 and −1.2. But this restriction is not known to 
the truncated Pareto, which has no natural lower or upper bounds 
on λ (White et al., 2008). As a result, a prior that places most of its 
probability mass on these values (e.g. Normal( − 1.75,0.2)) seems 
appropriate. Such a continuous prior does not prevent findings of 
larger or smaller λ, but instead places properly weighted scepticism 
on such values.

An important assumption when setting priors is that we have a 
good understanding of the values that λ can reasonably take. For 
most of the examples here, our priors are weakly informative in the 
sense that they rule out clearly unreasonable values (e.g. � = -25, 
etc.), but have weak effects on values within reasonable ranges (e.g. 

F I G U R E  1  Modelled 95% credible intervals (CrI; K = 1000) of seven λs using (a) separate intercept-only models for each lambda, (b) a 
fixed linear predictor with the λ value as a group and (c) varying intercepts. Vertical black lines show the true λ with corresponding values to 
the right of each row. Intervals either include the true λ (yellow) or not (black). For plotting, model runs are arranged from lowest to highest 
minimum value of each interval.

TA B L E  1  Parameter recovery using three modelling approaches with the same data. First, separate models individually recapture known 
lambda values. Second, lambdas are estimated using a single fixed effects model. Third, lambdas are estimated hierarchically using a single 
varying intercept models. Each model and data simulation procedure is repeated 1000 times. Coverage is estimated for 95% credible 
intervals. Bias represents the mean and standard deviation of bias across the 1000 replicates.

True lambda Metric Separate models Fixed predictor Varying intercepts

−2.4 Coverage 0.95 0.94 0.95

−2.2 Coverage 0.93 0.96 0.96

−2.0 Coverage 0.95 0.95 0.95

−1.8 Coverage 0.95 0.94 0.95

−1.6 Coverage 0.94 0.95 0.95

−1.4 Coverage 0.95 0.95 0.94

−1.2 Coverage 0.94 0.95 0.95

−2.4 Bias −0.006 (0.08) 0.001 (0.05) 0.01 (0.08)

−2.2 Bias −0.011 (0.07) −0.002 (0.04) 0.004 (0.07)

−2.0 Bias −0.006 (0.06) 0 (0.03) 0 (0.06)

−1.8 Bias −0.004 (0.05) −0.001 (0.03) −0.004 (0.05)

−1.6 Bias −0.004 (0.04) −0.002 (0.02) −0.003 (0.04)

−1.4 Bias −0.003 (0.04) 0 (0.02) −0.005 (0.04)

−1.2 Bias −0.001 (0.03) 0 (0.02) −0.004 (0.03)
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λ ~ -3 to 0). Most published values of λ fall into this range regard-
less of the method used by those studies to estimate λ (Edwards 
et al., 2017; White et al., 2007). However, if more informative priors 
are required, such as our example in Figure 4d, then caution should 
be used when comparing prior expectations to previously estimated 
λs. For example, in an analysis of marine fish trawl data, Edwards 
et  al.  (2020) found that binning methods produced λ estimates of 
~−2.2 across 30 years of data. Yet reanalysis of the same data using 

F I G U R E  2  (a) Changes in parameter 
estimation and coverage (numbers next 
to densities) as a function of sample size. 
Sample size is the number of individual 
body sizes used to estimate λ. Estimates of 
λ were repeated K = 1000 times for each 
sample size and known λ combination. (b) 
The effect of size range on λ estimates. 
Modelled estimates (K = 1000) of two λs 
using separate intercept-only models with 
xmin and xmax ranging one to five orders of 
magnitude. Horizontal black lines show 
the true λs (−1.6 or −2). Dots in (a and b) 
are the posterior median λ estimates. 95% 
credible intervals of those estimates (not 
shown for clarity) either include the true λ 
(yellow) or not (black).
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TA B L E  2  Bias and 95% coverage probabilities for the intercept 
and slope parametres of a linear regression. Values are estimated 
across 1000 model runs, each of which includes simulation of body 
sizes and a model fit using the isdbayes package.

Parameter Bias (mean, sd) Coverage

Intercept 0 (0.01) 0.96

Slope 0 (0.01) 0.95
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the truncated Pareto found λ estimates closer to −1.6. If we were 
to use these values to guide prior selection, then the choice of rea-
sonable prior would clearly depend on the method used to estimate 
λ. The simplest approach would be to assume a fixed correction 
between the binning methods and the truncated Pareto when set-
ting priors based on binning methods. Unfortunately, such a fixed 
correction does not appear to exist (Pomeranz et al., 2024), making 
it difficult or impossible to use λs from binning methods to guide 
informative prior selection.

Similar to priors, partial pooling from varying intercepts pro-
vides additional benefits, allowing for the incorporation of hierar-
chical structure and pulling λ estimates towards the global mean 
(Gelman, 2005; Qian et al., 2010). In the example shown here, pool-
ing was able to downweight the influence of an outlier that had a 
relatively small sample size (n = 50 individuals compared to n = 300). 
By contrast, in the two step-method, the same outlier had a large 
influence on the regression outcome, because the model had no 
information on the number of individuals used to generate each λ. 
Another benefit of pooling (both from varying effects and scepti-
cal priors) is in prediction (Gelman, 2005; Hobbs & Hooten, 2015). 
This becomes especially important when models are used to fore-
cast future ecosystem conditions. Forecasts are becoming more 
common in ecology (Dietze et al., 2018) and are likely to be eas-
ier to test with modern long-term data sets like NEON (National 
Ecological Observatory Network) in which body size samples will 
be collected at the continental scale over at least the next 20 years 
(Kuhlman et al., 2016). In addition, because the effects of priors and 
pooling increase with smaller sample sizes, varying intercepts are 
likely to be particularly helpful for small samples. In other words, 
priors and partial pooling contain built-in scepticism of extreme 
values, ensuring the maxim that ‘extraordinary claims require ex-
traordinary evidence’.

One major drawback to the Bayesian modelling framework here 
is time. Bayesian models of even minimal complexity must be esti-
mated with Markov Chain Monte Carlo techniques. In this study, 
we used the No U-Turn sampling (NUTS) algorithm (Hoffman & 
Gelman, 2014) via rstan (Stan Development Team, 2022). Stan can 
be substantially faster than other commonly used programs such as 
JAGS and WinBUGS, which rely on Gibbs sampling. For example, 

Stan is 10–1000 times more efficient than JAGS or WinBUGS, with 
the differences becoming greater as model complexity increases 
(Monnahan et al., 2017). In the current study, intercept-only models 
for individual samples with ~300 to 1500 individuals could be fit 
quickly (<2 s total run time (warm-up + sampling on a Lenovo T490 
with 16GB RAM)). However, the hierarchical regression models 
took >1 h to run. These times include the fact that our models in-
cluded several modifications to improve efficiency, such as weakly 
informative priors, standardized predictors and non-centred pa-
rameterization, each of which are known to improve convergence 
and reduce sampling time (McElreath, 2020). But if Bayesian infer-
ence is desired, these run times may be worth the wait. In addition, 
they are certain to become faster with the refinement of existing 
algorithms and the introduction of newer ones like Microcanonical 
HMC (Robnik et al., 2022).

Body size distributions in ecosystems have been studied for 
decades, yet comprehensive analytical approaches to testing hy-
potheses about them are lacking. We present a single analytical 
approach that takes advantage of the underlying data structures 
of individual body sizes (truncated Pareto distributions) while 
placing them in a generalized (non)-linear hierarchical modelling 
framework. In addition to fitting regression models, the results 
suggest that sample sizes >100 individuals, but optimally >1000, 
are sufficient to accurately estimate λ. We also found good perfor-
mance at size ranges from two to five orders of magnitude, though 
it is important to note that this result is based on simulated data 
in which xmax is known (i.e. we ‘know’ it is 10, 100 or 1000 be-
cause we are using simulated data). This is more difficult in a field 
setting. For example, in a community with � = -1.5, xmin = 1g and 
xmax = 1000g, there is only a 0.00016 probability of sampling an 
individual >999 g. In other words, if the choice of xmax is based only 
on the sample data, it is likely to underestimate the true xmax in the 
community. One approach is to set xmax from the largest individ-
ual caught under repeated sampling (Gjoni et al., 2024). In a field 
sample that ranges, say, three orders of magnitude in body size, 
researchers should ensure that this range reflects the likely range 
of true sizes in the data set. We hope that ecologists will adopt and 
improve on the models here to critically examine hypotheses of 
size spectra or other power law distributed data. Moreover, while 

F I G U R E  3  Modelled 95% credible 
intervals of (a) the intercept (�) and (b) the 
slope (�) of a generalized linear regression 
estimating the change in λ across a 
predictor. Vertical black lines show the 
true λ. Intervals either include the true λ 
(yellow) or not (black). For plotting, model 
runs are arranged from lowest to highest 
minimum value of each interval.

(a) a (b) ß

−1.26 −1.23 −1.20 −1.17 −0.12 −0.08 −0.04 0.00

0

250

500

750

1000

0

250

500

750

1000

Parameter values

S
im

u
la

ti
o
n

 2041210x, 2024, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14312 by U
niversity O

f N
orth T

exas, W
iley O

nline L
ibrary on [21/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  865WESNER et al.

the examples here are for ecological size spectra, the statistical 
approach is not limited to ecological data, but can be applied to 
analysis of power law distributions that are common in a wide vari-
ety of disciplines (Aban et al., 2006; Clauset et al., 2009).
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F I G U R E  4  Regression results from (a) a two-step process where λs are first estimated with separate models and then used as the 
response variable in a Gaussian regression. (b) Same as (a), but with measurement error (posterior standard deviation of λ) included on the 
response variable. (c) A generalized linear mixed model with a truncated Pareto likelihood and weak priors. (d) A generalized linear mixed 
model with a truncated Pareto likelihood and strong priors. The solid black line shows the true regression slope. Dark shading shows the 
50% CrI and light shading shows the 95% CrI. All models have the same underlying individual body size data. Points and error bars show the 
median and 95% CrI. For (a), only the median is shown, since the model does not include measurement error.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table  S1. Improvements in model run time (warmup + sampling) 
between long and aggregated (agg) data sets.
Table S2. First two rows of the simulated macroinvertebrate (inverts) 
and fish body size data.
Figure S1. One hundred posterior distributions of λ for each of four 
data aggregation approaches.
Figure S2. Inferences when correcting counts for sampling area are 
sensitive to the size of the sampling area.
Figure S3. Modeled 95% credible intervals (CrI, K = 50) of seven 
lambdas using (a) fixed effects with 2 chains, (b) fixed effects with 4 
chains, (c) varying intercepts with 2 chains, or (d) varying intercepts 
with 4 chains.
Figure S4. Gelman-Rubin convergence diagnostics (rhats) for each 
parameter of K = 50 model runs each for (a) fixed effects with 2 or 4 
chains and (b) varying intercepts with 2 or 4 chains.
Figure S5. Prior sensitivity. The data are simulated from lambda = −1.6, 
shown by the dotted black line.
Figure S6. One hundred simulations from (a) the prior distribution 
and (b) the posterior distribution after fitting the model to data.
Figure S7. Posterior predictive checks of models estimating three 
ISDs with true lambdas ranging from −2 to −1.3.
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