
J Anim Ecol. 2024;00:1–14.	﻿�   | 1wileyonlinelibrary.com/journal/jane

Received: 17 August 2023  | Accepted: 21 November 2023

DOI: 10.1111/1365-2656.14044  

R E S E A R C H  M E T H O D S  G U I D E

Maximum likelihood outperforms binning methods for 
detecting differences in abundance size spectra across 
environmental gradients

Justin Pomeranz1  |   James R. Junker2,3  |   Vojsava Gjoni4  |   Jeff S. Wesner4

© 2024 The Authors. Journal of Animal Ecology © 2024 British Ecological Society.

1Colorado Mesa University, Grand 
Junction, Colorado, USA
2Great Lakes Research Center, Michigan 
Technological University, Houghton, 
Michigan, USA
3Louisiana Universities Marine 
Consortium, Chauvin, Louisiana, USA
4Department of Biology, University of 
South Dakota, Vermillion, South Dakota, 
USA

Correspondence
Justin Pomeranz
Email: jfpomeranz@gmail.com

Handling Editor: Julien Cucherousset

Abstract
1.	 Individual body size distributions (ISD) within communities are remarkably con-

sistent across habitats and spatiotemporal scales and can be represented by size 
spectra, which are described by a power law. The focus of size spectra analysis 
is to estimate the exponent (�) of the power law. A common application of size 
spectra studies is to detect anthropogenic pressures.

2.	 Many methods have been proposed for estimating � most of which involve bin-
ning the data, counting the abundance within bins, and then fitting an ordinary 
least squares regression in log–log space. However, recent work has shown that 
binning procedures return biased estimates of � compared to procedures that 
directly estimate � using maximum likelihood estimation (MLE). While it is clear 
that MLE produces less biased estimates of site-specific λ's, it is less clear how this 
bias affects the ability to test for changes in λ across space and time, a common 
question in the ecological literature.

3.	 Here, we used simulation to compare the ability of two normalised binning meth-
ods (equal logarithmic and log2 bins) and MLE to (1) recapture known values of 
�, and (2) recapture parameters in a linear regression measuring the change in � 
across a hypothetical environmental gradient. We also compared the methods 
using two previously published body size datasets across a natural temperature 
gradient and an anthropogenic pollution gradient.

4.	 Maximum likelihood methods always performed better than common binning 
methods, which demonstrated consistent bias depending on the simulated values 
of �. This bias carried over to the regressions, which were more accurate when � 
was estimated using MLE compared to the binning procedures. Additionally, the 
variance in estimates using MLE methods is markedly reduced when compared to 
binning methods.

5.	 The error induced by binning methods can be of similar magnitudes as the varia-
tion previously published in experimental and observational studies, bringing into 
question the effect sizes of previously published results. However, while the meth-
ods produced different regression slope estimates, they were in qualitative agree-
ment on the sign of those slopes (i.e. all negative or all positive). Our results provide 
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1  |  INTRODUC TION

Body size distributions are a fundamental characteristic of communi-
ties. In general, abundance declines with increasing body size, and this 
is thought to be a consequence of simple size-dependent metabolic 
constraints on organisms' energy use predicted by the metabolic theory 
of ecology (Brown et al., 2004; Nee et al., 1991). The remarkable consis-
tency of these relationships across spatiotemporal scales and ecosystems 
has led them to be recommended as a “universal” indicator of ecological 
status (Petchey & Belgrano, 2010). Variation in size-abundance relation-
ships have been documented through space (Pomeranz et  al., 2022), 
time (Evans et al., 2022; McGarvey & Kirk, 2018) and in response to 
human activities (Jennings & Blanchard,  2004; Martínez et  al.,  2016; 
Pomeranz et al., 2018). Likewise, variation in size-abundance relation-
ships have been used to explain fundamental differences in how com-
munities are organised. For example, external resource subsidies “bend 
the rules” and allow higher abundances of large body sizes than would 
be expected based on metabolic theory (Perkins et  al.,  2018, 2021). 
However, recent research has shown that these results may be an arte-
fact of how the data were treated. Edwards et al. (2020) analysed a time 
series of marine fisheries data and found that the parameter explain-
ing the relationship was either invariant, or that it changed consistently 
through time depending on the methodology used.

Individual size distributions (ISD sensu White et al., 2007), also re-
ferred to as abundance size spectra, are one of the size-abundance 
relationships commonly used. Generally, there is a negative relation-
ship between individual body size (m, measured in mass) on the x-axis 
and abundance (N) on the y-axis. Theoretical and empirical data sup-
port this relationship being described as a simple power law with ex-
ponent � in the form of

(Andersen & Beyer, 2006; Sheldon & Kerr, 1972). ISDs represent 
frequency distributions of body sizes within a community. 
Specifically, let m be a random variable of body sizes described by 
the probability density function:

where

and where m is body mass in milligrams, λ is the exponent describing 
the power law distribution bounded by the minimum (mmin) and maxi-
mum (mmax) body sizes in the data (Edwards et al., 2017).

The primary goal of ISD analyses is to estimate λ, and ecologists 
have devised multiple methods for doing so. Commonly, Ni is the 
count of body sizes in bins i, where bin i has midpoint mmid,i, and λ is 
estimated as the slope from ordinary least squares (OLS) regressions 
in log–log space (commonly log10) as:

where Ni is the count in bin i, mmid,i is the mid-point of bin i, � is the 
parameter describing the decline in abundance (estimate of the power 
law exponent), β0 is the intercept, and ε is the error term.

Myriad binning methods have been proposed, including different 
bin widths on linear and logarithmic scales. Likewise, some methods 
rely on the absolute counts in the bins (referred to here as “abun-
dance spectra”) and others use normalization techniques (referred to 
here as “normalized abundance spectra”) such as dividing the count 
by the bin width. To further complicate matters, the total biomass 
in a body size bin can be summed to estimate the biomass spec-
trum or the normalised (when the total biomass is divided by the 
bin width) biomass spectrum. The common feature that ties binning 
methods together is data reduction, in which all the variation in indi-
vidual sizes within bins is removed by assigning each individual to a 
single body size (like the midpoint of a bin between 10 and 100 mg). 
As an alternative to binning methods, λ can be estimated directly 
on un-binned data using maximum likelihood estimation (MLE; see 
Sprules & Barth, 2016 for a review on size spectra methods). The 
major advantage of using MLE is that it does not require any binning 
and hence no abundance estimates. Instead, it uses only the indi-
vidual body sizes provided in the data, consistent with theoretical 
expectations of ISD (Edwards et al., 2017).

Previous work has shown that the estimates of λ differ between 
MLE and size-binned OLS techniques (Edwards et  al.,  2017, 2020; 
White et al., 2008). Size-binned OLS methods are particularly sensitive 
to decisions made in the binning process including the number, width, 
and beginning and ending “edges of the bins” (Edwards et al., 2020; 
White et al., 2008). Simulation studies have shown that MLE offers 
consistently more accurate estimates of λ (Edwards et  al.,  2017, 
2020; White et al., 2008), and reanalysis of empirical data also indi-
cates that the conclusions are dependent on the method used (White 
et al., 2008). For example, White et al. (2008) reanalyzed the data of 
Enquist and Niklas  (2001) and Meehan  (2006) using MLE methods. 
The original publications supported theoretically expected quantities, 
whereas the less biased MLE methods produced estimates which de-
viated from those expected by theory. Likewise, Edwards et al. (2020) 
analysed a time-series of individual body sizes of demersal fish from 
the North Sea using different methods. Depending on the method 
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further support for the direct estimation of � and its relative variation across envi-
ronmental gradients using MLE over the more common methods of binning.
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used, they either found a decrease (steepening) of λ or invariance of 
λ through time (fig. 1 in Edwards et al., 2020). Although not explicitly 
discussed in either White et al.  (2008) or Edwards et al.  (2020), it is 
not known what the “true” relationship of the empirical dataset was. 
For instance, the differences detected between the methods in the 
marine fish community through time could have drastic implications 
for what future management recommendations may be made. Steeper 
size-abundance relationships imply that the abundance of large fish 
is declining (or the abundance of small fish is increasing). If this were 
the conclusion reached, it seems reasonable that managers might rec-
ommend reductions in fish catch quotas to allow the community to 
recover. Alternatively, if the size-abundance relationship is invariant 
through time, it would seem reasonable to not make any changes to 
fisheries decisions based solely on the size-abundance relationship. 
Furthermore, it may imply that the biological communities organise 
themselves to have a consistent size-abundance relationship, even 
when human impacts (i.e. fishing) is present. This is particularly intrigu-
ing given that seminal analyses of marine fish communities have had 
profound impacts on the establishment, development, application and 
interpretation of size-abundance relationships in ecology (Jennings & 
Blanchard, 2004).

While there is a growing consensus that MLE methods offer 
more reliable estimates of λ than binning methods, it remains un-
clear if these biases are consistent and systematic or stochastic, and 
whether the relative change in ISD parameters is consistent across 
space and time. In other words, if the data within a study are all 
treated the same, does a relative change of size-binned OLS slope of 
0.1 coincide with a relative change of MLE λ estimates of 0.1?

We had three primary objectives in this study: (1) to compare 
how well different methods estimate site-specific λ's, (2) recapture 
parameters in a linear regression measuring the change in λ across 
a hypothetical environmental gradient and (3) to see if the conclu-
sion reached on empirical datasets were dependent on the different 
methods used. Objective 1 extends work by Edwards et al.  (2017, 
2022) and compares MLE methods to two common logarithmic 
binning methods for constructing normalised abundance spectra. 
Objective 2 is a novel simulation exercise to make recommendations 
for detecting differences in ISD relationships in future studies. We 
find that MLE provides more accurate estimates of site-specific λ 
values, as well as recapturing relative changes in λ values across a 
hypothetical gradient. We recommend that future work uses MLE 
methods to fit size-abundance relationships.

2  |  METHODS

2.1  |  Data simulation

To investigate the performance of commonly used methods, we 
simulate body size observations from a bounded power law dis-
tribution using the rPLB() function in the sizeSpectra pack-
age (Edwards,  2020) for the R statistical language (version 4.0.3, 
R Core Team, 2020), as described in (Edwards et  al., 2017). Given 

known values of λ, mmin and mmax, the rPLB() function generates 
random body sizes (m) as described in Edwards et al. (2017). For all 
simulations, we set mmin = 0.0026 and mmax = 1.2∗103. These values 
were based on empirical body sizes of stream benthic communi-
ties reported in (Pomeranz et  al.,  2022). In a review of size spec-
trum methods, Sprules and Barth (2016) indicate that the results of 
analyses may depend on the range of body sizes present in the data 
(i.e. partial community, such as zooplankton or fish, compared with 
a community including body sizes from zooplankton to fish). Our re-
sults were not dependent on the range of body sizes (Supporting 
Information). No ethical approval was required for this study.

2.2  |  Experiment 1: Site-specific � estimates

Using the procedure above, we independently sampled n = 999 
body sizes from nine different λ's: (−0.50, −0.75, −1.00, −1.25, −1.50, 
−1.75, −2.00, −2.25, −2.50). The values of � describe how quickly 
the abundance of large body sizes decline within a community. For 
example, a value of −0.5 means there would be a relatively high 
number of large body sizes (shallow decline) whereas a value of −2.5 
means there would be relatively very few large body sizes (steep 
decline). For each value of λ, we repeated the process 1000 times 
(reps), resulting in 9000 (9 λ's * 1000 reps) estimates.

2.3  |  Estimation of ISD parameter �

After simulating data, we used three different methods (described 
below) to estimate the value of λ (maximum likelihood, equal log-
arithmic bins normalised [ELBn] and log2 bins normalised [L2n]) 
and plotted the distribution of estimated values obtained for each 
method against the known value of λ.

2.4  |  Maximum likelihood estimation

The MLE is a method for estimating parameters of an assumed 
probability function directly by maximizing a likelihood function. 
MLE directly estimates λ by finding the value of λ which maxim-
ises the likelihood function based on the specific data analysed (see 
Edwards et  al.,  2017). Edwards et  al.  (2020) provided an R pack-
age called sizeSpectra which has MLE methods and tutorials on 
how to apply them to datasets. Here, we modified MLE functions 
from the sizeSpectra package for the R language to estimate λ 
(Edwards, 2020). Throughout the manuscript, these estimates are 
referred to as MLE.

2.5  |  Equal logarithmic bins normalised: ELBn

For the first binning method, we created six equal logarithmic bins 
covering the range of body sizes. This method (without normalization) 
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has been used extensively in previous studies (Table 1). It is impor-
tant to note that the number of bins is set a priori, and the widths 
of the bins is determined based on the range of the body sizes 
present in the data. For example, with six equal logarithmic bins, 
if the data ranged from 1 to 100 g the first bin would be from 1.0 
to 2.3 g, and the final bin would be from 64.5 to 100 g, whereas if 
the data ranged from 1 to 1000 g the first bin would be from 1.0 
to 3.2 g and the final bin would be from 341.5 to 1096 g (Figure S1 
in supplemental information). Here, we set the body size range to 
be the same for all simulations, so the widths of the bins do not 
vary. The count in each bin was normalised by dividing by the bin 
width to account for the unequal bin sizes. Normalization corrects 
for the distortion caused by logarithmic bins and generally improves 
the linear fits of OLS (Sprules & Barth, 2016; White et al., 2008). 
Although previous publications using this method generally do not 
use normalization, the process of normalizing shifts the OLS esti-
mate of λ by −1. In other words, an un-normalised OLS estimate 
of −0.75 would result in an OLS estimate of −1.75 when normal-
izing the data (Edwards et al., 2017; Pomeranz et al., 2022; Sprules 
& Barth, 2016). Throughout the manuscript, the normalised equal 
logarithmic binning method will be referred to as ELBn which was 
not tested in Edwards et al. (2017).

2.6  |  Log2 bins normalised: L2n

The second binning method was similar to ELBn but bins of equal 
with on a log2 scale were used, where the width of each bin is 
twice that of the previous one. When working with empirical data 
with different size ranges, this can alter the number of bins per site 
which is known to alter parameter estimates (Sprules & Barth, 2016; 

White et  al.,  2008). However, since the data here were simulated 
from a known size range, the number of bins for each site is identi-
cal. Essentially, the ELBn method sets the number of bins and the 
width varies based on the data, whereas the L2n method sets the 
bin widths and the number of bins varies based on the data. The 
count in each bin is normalised in the same way as described above 
for the ELBn approach. Log2 bins have been used extensively in 
the literature to construct biomass and abundance spectrum, both 
normalised and un-normalised (Table 1). The L2n method is like the 
LBNbiom method in Edwards et al., 2017 except in the present study 
the count in each bin is used as opposed to the sum of the total bio-
mass in each bin.

As mentioned above, normalization consistently shifts the OLS 
estimate of λ − 1 when compared with OLS estimates from un-
normalised counts. It is also worth noting the relationship between 
abundance (the focus of the present study) and biomass spectrum 
(commonly used in studies of marine systems). OLS estimates of the 
size spectra exponent when using un-normalised data is actually 
estimating λ + 1 (hence, it is necessary to subtract 1 from the OLS 
estimate to calculate λ; Edwards et al., 2017; Sprules & Barth, 2016; 
White et  al.,  2008), whereas OLS using normalized abundance 
spectrum is estimating λ. Likewise, OLS estimates of the exponent 
when using biomass are actually estimating λ + 2, and when using 
normalised biomass are estimating λ + 1. Although we do not test 
the biomass spectrum here directly, our conclusions apply to studies 
of biomass spectra after accounting for the shift in estimates from 
abundance to biomass relationships and accounting for normaliza-
tion (if applicable). After processing the simulated data through the 
ELBn and L2n binning procedures, λ was estimated using simple OLS 
regression (Equation 4), which is directly comparable with the MLE 
estimates.

Authors (Year)
Abundance (N) or 
biomass(B) Bin size Normalised?

Maxwell and Jennings (2006) B log2 No

Jennings and Blanchard (2004) B log2 No

Jennings et al. (2002) B log2 No

Gaedke et al. (2004) Ba log2 Yes

Mehner et al. (2018) Ba log2 Yes

Mazurkiewicz et al. (2020) Ba log2 Yes

McGarvey and Kirk (2018) Nb log2 Yes

Fraley et al. (2018) N log2 No

Pomeranz et al. (2019a) N log2 Yes

Chang et al. (2014) N log2 Yes

Martínez et al. (2016) N ELB (bin N = 6) No

Yvon-Durocher et al. (2011) N ELB (bin N = 10) No

Perkins et al. (2018) N ELB (bin N = 6) No

Dossena et al. (2012) N ELB (bin N = 6) No

Perkins et al. (2021) N ELB (bin N = 6) No

aThese references use the LBNbiom method as described in Edwards et al., 2017.
bMcGarvey and Kirk present the results as D ~ M, where D is the number of individuals per m−2.

TA B L E  1  Selected citations 
demonstrating the use of the two binning 
methods (or variations) assessed here. 
ELB refers to equal logarithmic bins, and 
the number of bins used in the study is 
indicated in parentheses. The studies 
are organised by whether they used 
abundance (N, count of individuals in 
a bin) or biomass (B, sum of individuals 
in a bin), and whether the results were 
normalised (sum or count in a bin 
divided by bin width) or presented un-
normalised (raw count or sum in a bin). 
See the main text for a discussion on 
converting estimated exponent values 
from abundance to biomass, and from un-
normalised to normalised.



    |  5POMERANZ et al.

2.7  |  Experiment 2: Variation in � across a 
hypothetical environmental gradient

A common application of size spectra analyses is to test for changes 
in λ across some sort of gradient (i.e. anthropogenic pollution, 
Pomeranz et  al., 2019a; resource subsides, Perkins et  al.,  2018; 
time Edwards et  al.,  2020; environmental temperature, Pomeranz 
et al., 2022). However, it is unknown how biases in site-specific es-
timates of λ “scale-up” and potentially alter the conclusions reached 
for changes in λ across gradients. The focus of experiment 2 was 
to investigate the ability of the three methods to recapture known 
changes in λ across a hypothetical environmental gradient (Figure 1). 
To do this, we set λ to vary at a known rate (β) across a hypotheti-
cal gradient (x) and then sampled body sizes from bounded power 
laws described by λ. We then used the three methods (ELBn, L2n, 
and MLE) to estimate site-specific λ at each point across the gradi-
ent, and then performed OLS regressions to estimate β. We con-
ducted this process 1000 times (replicates) to get a distribution of 
estimated β 's and compared this distribution to the known value of 
β (see Figure 1).

Experiment 2 had two parts: (2.1) Assessing how the bias of 
site-specific λ estimates influences our estimates of β (the change 

in λ across a hypothetical environment) depending on where λ falls 
in parameter space (λ from −2.5 to −0.5); (2.2) How does the mag-
nitude of β (0, 0.25, 0.5) across the gradient influence our esti-
mates of β?

2.8  |  Experiment 2.1: λ  “scenarios”

To test how variation in site-specific λ “scale-up” across gradients, 
we performed OLS regression analysis based on simulations accord-
ing to the following equation:

where �jkl is the estimated parameter from site j, replicate k and method 
l, xj is the environmental value at site j, β0,kl and βenv,kl are the regres-
sion intercept and slope coefficients, for replicate k, and method l, re-
spectively, and εkl is the error term. The distribution of βenv,kl estimates 
across simulation were then plotted against the known value of βenv.

For each replicate (k = 1, …, 1000), we had five sites ( j) uniformly 
spaced across a hypothetical environment (x) with values of x be-
tween −1 and 1 (i.e. values of xj were − 1.0, −0.5, 0, 0.5, 1.0). This 
can be compared to standardizing values of an environmental value 

(5)�jkl = �0,kl + �env,klxj + �kl

F I G U R E  1  Conceptual figure of the simulation procedure used in experiment 2. (a) we set � (points) to vary at a known relationship (�, 
dashed line). (b) Using known values of �, we sampled 999 body sizes for each site. (c) We estimated site-specific � using the three methods 
(ELbn, L2n, MLE, see main text) and plotted them across the hypothetical environmental gradient (points, coloured by method). (d) We then 
estimated � using OLS regressions for each method separately (coloured lines). (e) We repeated a–d 1000 times to get a distribution of � 
estimates. (f) We compared the distribution of � estimates (coloured density plots) with the known values of � (dashed vertical line).
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(i.e. temperature) across a gradient with z-scores. Each site (xj) had 
a corresponding value of λ based on the λ scenario (steep, medium 
and shallow, Table 2). In the “steep” scenario λ ranged from −2.5 to 
−1.5, compared to −2.0 to −1 in the “medium” scenario and from −1.5 
to −0.5 in the “shallow” scenario. For all scenarios in experiment 2.1, 
the relationship of λ across the environment, x, was set as β = 0.5.

For each site j, and replicate k we independently sampled 999 
body-size observations from a bounded power law distribution de-
scribed by λ and with mmin and mmax set as in experiment 1. Within 
each simulation, we estimated the value of λ for each data set using 
the three methods (l, = L2n, ELBn, and MLE) as described above. We 
then fit an OLS regression separately for each replicate k using each 
method according to equation 5:

For experiment 2.1, we performed a total of 15,000 simulations 
(5 sites * 3 scenarios * 1000 replicates). The main results presented 
here were not dependent on the range of x-values or the number of 
sites (Supporting Information).

2.9  |  Experiment 2.2: Varying the effect size of the 
known relationship

In the previous process, the �env had an effect size (i.e. slope) of 
−0.5, and the intercept was varied to be equal to −2, −1.5, and −1 
(i.e. shifting the window in parameter space). We wanted to test the 
robustness of our results by varying the effect size. We repeated 
the process with λ centred at −1.5, but varied the values of λ across 
the hypothetical gradient to have a relationship of �env = −0.25 or 0 
(Table 3).

2.10  |  Empirical data

We re-analysed two data sets of benthic macroinvertebrate com-
munities from stream habitats across two different gradients. In the 
first, quantitative macroinvertebrate samples were collected from 
streams across an acid mine drainage (AMD) stress gradient. Details 
of the sample collection and processing can be found in (Pomeranz 
et al., 2019a). Briefly, all individuals from each sample were identified 
to the lowest practical taxonomic unit and body lengths were meas-
ured using Adobe Acrobat 9 Pro (San Jose, California, USA) photos 
taken with a Leica DFC295 digital camera mounted to a Leica model 
M125 microscope. Body mass was estimated using taxon-specific 
published length-weight regressions.

The second dataset was from the wadeable stream sites of 
National Ecological Observatory Network (NEON)  (2022). NEON 
stream sites are located across a wide temperature gradient in the 
United States, from Puerto Rico to Alaska. Quantitative macroinver-
tebrate samples were collected using the most appropriate method 
based on the local habitat. All individuals were identified and had 
their body lengths measured, and body mass was estimated using 
taxon-specific published length-weight regressions. This data has 
been analysed for ISD relationships previously using methods de-
scribed in Pomeranz et al.  (2022). Detailed methods of the sample 
collection and initial data QA/QC processing can be found in the 
macroinvertebrate data product information documents found on 
the NEON website https://​data.​neons​cience.​org/​data-​produ​cts/​
DP1.​20120.​001.

Estimates of the slope coefficient (�AMD, and βNEON, respectively) 
±1 SD, were compared across methods. This allowed us to deter-
mine whether the main results published previously differed de-
pending on the method used.

2.11  |  Performance metrics

We compared performance of each procedure (L2n, ELBn, MLE) by 
first plotting the distribution of site-specific λ estimates from experi-
ment 1, and the distribution of βenv estimates from experiment 2 from 
the three methods against the known values. For each procedure we 
estimated the width of the 95% CI's to compare uncertainty, as well 
as calculated bias for the procedures overall as the median absolute 
difference (averaged across all simulations) between the known val-
ues and the modelled estimates. Finally, we recorded the proportion 
of model estimated 95% CI's which contained the known value.

3  |  RESULTS

3.1  |  Experiment 1: λ  estimates

There was considerable variation in the � estimate across meth-
ods (Figure  2). The distribution of estimates from the MLE 
method was always symmetrical and centred at the known value 

TA B L E  2  Variables for experiment 2.1 The environmental value, 
x are the values for the hypothetical environmental gradient. The 
subsequent columns represent the corresponding λ values across 
three different “scenarios”. For each scenario βenv = 0.5.

Environmental value, x Steep λ Medium λ Shallow λ

−1 −2.5 −2 −1.5

−0.5 −2.25 −1.75 −1.25

0 −2 −1.5 −1

0.5 −1.75 −1.25 −0.75

1 −1.5 −1 −0.5

TA B L E  3  Variables for experiment 2.2. The environmental value, 
xj are the x-values for the hypothetical environmental gradient. The 
subsequent columns represent the corresponding λ values across 
three different values of βenv.

Environmental value, xj βenv = 0.5 βenv = 0.25 βenv = 0

−1 −1.5 −1.25 −1.5

−0.5 −1.25 −1.375 −1.5

0 −1 −1.5 −1.5

0.5 −0.75 −1.625 −1.5

1 −0.5 −1.75 −1.5

https://data.neonscience.org/data-products/DP1.20120.001
https://data.neonscience.org/data-products/DP1.20120.001
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of � (Figure  2). The distribution of estimates from the binning 
methods were generally wider and occasionally asymmetrical (i.e. 
long right-tails for L2n and ELBn when λ = −2.25, Figure  S3), or 
bimodal (i.e. ELBn method for λ = −1.5). We also compared the 
proportion of 95% CI's which contained the known value of λ for 
each method. The proportion of CI's produced by MLE estimates 
which had the known value of λ was exactly 95%, as expected. 
However, only 93% of the CI's from the ELBn method contained 
the known value of λ. The L2n method performed the worse, with 
only 70% of the CI's containing the known value. On average, the 
CI's for the λ estimates produced by the L2n and ELBn methods 
were ~two times wider than those produced by MLE (Table  4), 
indicating greater consistency of estimates from MLE. Similarly, 
estimates of � deviated from the true value by an average of 
0.035 or 0.045 absolute units for the L2n and ELBn methods, up 
to four times higher than the deviation (0.012) observed for the 
MLE (Table 4).

Interestingly, the two binning methods systematically over-
estimated λ when the simulated relationships were steeper (i.e. 
distributions of estimates for the binning methods are to the 
right when �= ~ −2.5 to −1.5, Figure  2) and slightly underesti-
mated λ when the simulated relationships were shallower (dis-
tributions of estimates to the left when � > ~−1.25). This finding 
was more pronounced in the L2n method compared with the 
ELBn method.

3.2  |  Relationship across hypothetical 
environmental gradients

3.2.1  |  Experiment 2.1: λ “scenarios”

We wanted to assess the ability of the three methods in recapturing 
parameters describing a known change in λ across gradients (i.e. a 
known relationship of �env = − 0.5). However, the binning methods 
provide inaccurate estimates of site-specific λ, and these inaccura-
cies were not equivalent across the range of λ values tested. The 
magnitude of the deviations of λ estimates for the binning methods 
increased with more negative (i.e. steeper) values of λ. Because of 
the different performance of the two binning methods at steep and 
shallow values of λ, we performed simulations for three separate 
scenarios across the λ parameter space. The three scenarios were 
steep (λ varies from −2.5, −1.5), medium (λ varies from −2, −1) and 
shallow (λ varies from −1.5, −0.5).

The MLE method (Figure  3, blue) recaptured the known slope 
value in each of the scenarios, with a median absolute difference 
of ~0.008 units between the modelled and known values (Table 4). 
By contrast, the binning methods systematically overestimated the 
known slope (Figure 3), with median absolute differences three to 
four times greater than the MLE. Similarly, uncertainty in the slope 
estimates derived from binning methods was twice that of the un-
certainty in the MLE method (Table 4).

F I G U R E  2  Distribution of Lambda 
estimates by method (colour) from 
random samples of body sizes from 
bounded power law distributions with 
varying exponents (−2.5 to −0.5). The 
figure is facetted by the known lambda 
parameter (facet title) and is also shown 
as the dashed line in each facet. Note that 
the x-axis varies in each facet.
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3.3  |  Experiment 2.2: Varying the effect size of the 
known relationship

All methods recaptured the correct sign of the slopes, yielding 
qualitative consistency (Figure  4). However, the binning meth-
ods systematically underestimated the true value of the slope by 
~0.05 units (Figure 5). Likewise, uncertainty in the slope estimates 
was always greater in the binning methods, with the width of the 
distributions increasing with stronger relationships across a hypo-
thetical gradient. By comparison, the MLE showed no evidence of 
bias and was always centred at the known value with relatively nar-
row variation.

3.4  |  Empirical data

The empirical dataset contained λ estimates that spanned the range 
observed across diverse ecosystems (−2.28 to 0.02, depending on 
the data set and method). Both empirical data sets yielded similar 
patterns to those observed in the simulated data. There was quali-
tative agreement in that the direction of the coefficients (i.e. βAMD, 
βNEON, coefficients) were the same among methods, with positive 
slopes across the pollution gradient (Figure 6a) and negative slopes 
across the temperature gradient. However, the magnitude of change 
differed between methods. The AMD slopes ranged from ~0.062 
with MLE to ~0.078 with L2n (Figure 6b), while temperature slopes 

TA B L E  4  Summary of three methods in recapturing the known values of site-specific λ values or the regression slopes (βenv) simulated in 
this study. Performance is determined by comparing the uncertainty (range of 95% CI's) and the absolute distance of the model estimates 
from the known values (median and SD of the difference). We also report the proportion of 95% CI's which contained the target value. 
Values are summarised across all n = 9000 or 6000 simulated data sets. See figures for more specific comparisons.

Target Method n
Median range of 
95% CI

Median absolute 
deviation

SD absolute 
deviation

Proportion of 95% 
CI containing

λ MLE 9000 0.0659 0.0119 0.0194 95%

λ L2n 9000 0.1315 0.0450 0.0959 70%

λ ELBn 8587 0.1699 0.0351 0.0677 93%

βenv MLE 6000 0.0377 0.0084 0.0094 82%

βenv L2n 6000 0.0805 0.0507 0.0424 38%

βenv ELBn 6000 0.0905 0.0299 0.0326 67%

F I G U R E  3  Distribution of relationship 
estimates (�env) in three different 
“scenarios” of lambda values; steep: 
λ = −2.5 to −1.5; medium: λ = −2.0 to 
−1.0; steep: λ = −1.5 to −0.5. The dashed 
vertical line is the known relationship 
value of −0.5.
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ranged from −0.0058 with MLE to −0.0019 with ELBn (Figure 6d). 
As with simulated data, slope uncertainty (±1 SD) was larger in 
the binning methods, particularly the ELBn method (Figure  5b). 
Likewise, the ISD relationship parameters consistently decrease (be-
come steeper) with increasing temperature across the NEON sites 
(Figure 6c).

4  |  DISCUSSION

The relationship between body size and abundance has been exten-
sively studied in a wide range of taxa inhabiting both terrestrial and 
aquatic ecosystems (reviewed by Brown, 1995; White et al., 2007). 
Empirical data shows generally consistent patterns and can be ex-
plained by the metabolic theory of ecology (Brown et  al.,  2004). 
Measuring parameters describing the decline in abundance with 
increasing body size in communities is being done with increasing 
frequency across ecology. Previous work has investigated the ac-
curacy and inherent biases associated with different estimation 
methods (Edwards et al., 2017, 2020; White et al., 2007). However, 
the extent to which these inaccuracies and biases compound across 
environmental gradients remains uncertain, making it difficult to 
detect variation in size-abundance relationships across environ-
mental gradients with confidence. The most important outcome of 
our work is that binning methods not only generate biased � val-
ues for individual datasets but that bias carries over to affect the 

parameters of subsequent regressions that use those λ's as response 
variables. This makes it challenging to understand how � varies in 
response to environmental gradients if binning is used to estimate 
ISD exponents.

Binning methods are easy to use and interpret, which most likely 
accounts for their wide use in ecological studies (Collyer et al., 2023; 
Martínez et al., 2016; Perkins et al., 2018). However, aggregating in-
dividuals into logarithmic bins removes a large amount of information 
within the data by collapsing body size variation into a single value 
within each bin. This is particularly true when using logarithmic bins. 
For example, all individuals placed into a bin that ranges from 2 to 4 g 
of mass are all treated as having a mass of 3 g, the midpoint of that 
bin. Likewise, a single abundance value is taken for each bin, despite 
that fact that there is almost certainly variation in the abundance 
of individuals that weigh ~2, ~3 or ~4 g. Moreover, the number of 
logarithmic-sized bins that can be produced by any dataset is limited. 
For the ELBn method, the number of bins is set a priori. However, a 
higher number of bins increases the chances of having empty bins 
and can lead to poorer OLS fits. This is why the number of bins using 
this method is often n = 6 data points, as this is a reasonable number 
of data points for a regression, but minimses the chances of hav-
ing empty bins (Dossena et al., 2012; Martínez et al., 2016; Perkins 
et al., 2018). If the range of body sizes is sufficient, using log2 bins 
can increase the number of bins available, but this is sensitive to 
the underlying data. Finally, linear bins could be used (i.e. 1–2, 2–3, 
3–4 g, etc.) to increase the number of data points. However, White 

F I G U R E  4  Individual regressions by 
method (columns) for three different 
known relationship values (rows from 
bottom to top, red dashed line). There 
were a total of 1000 replicates simulated 
for each combination of method and 
known relationship, but only 500 are 
plotted here to illustrate the variability in 
the regression lines.
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et al. (2008) showed that linear bins perform poorly under nearly any 
circumstance, and this is generally not recommended.

Regardless of the method used, binning data treats all individuals 
within a bin as identical, even though there are likely 100's or 1000's 
of individual body sizes available in each bin. By contrast, the MLE 
uses all the individual body size data to directly estimate λ, mean-
ing that it not only produces more accurate estimates, but does so 
with less uncertainty than binning, even when the underlying data 
sets are identical. Likewise, MLE produces less variable and more 
accurate estimates of changes in λ across gradients, making it the 
preferred method for assessing change in λ across spatiotemporal 
and environmental gradients. Even when the underlying data (i.e. 
vectors of individual body sizes) are not available, there is a method 
for estimating the exponent of size-abundance relationships using 
maximum likelihood, the MLEbin() method from the sizeSpec-
tra package (Edwards, 2020), which solves the same issues we dis-
cuss here. In other words, any future analyses of size spectra could 
use MLE estimates of λ, even if the data are only available in binned 
form.

At first glance, the variation in λ produced by different methods 
may seem trivial. For example, when the true λ was −2, the three 
methods gave values of −2 (MLE), − 1.96 (ELBn), and −1.87 (L2n). 
By themselves, all the methods appear reasonably close to the true 
value. However, the small differences imply very different food 
web structures because λ represents an emergent property gov-
erned by three ecological parameters: trophic transfer efficiency (t), 

predator–prey mass ratio (r), and the reciprocal of the metabolism-
mass scaling exponent (b), such that

Typical starting values assume that b = 3/4, t ~ 0.1, and r ~ 104 
(Brown et al., 2004), and these result in a λ value of −2. To get 
a λ value of −1.96 (the ELBn estimate) requires a change in at 
least one of the three parameters. For example, keeping all else 
the same, we can only get λ = −1.96 if t = 0.14. In other words, a 
2% change in λ (−1.96 vs. −2) reflects a 140% change in t (0.14 
vs. 0.1). More strikingly, to get λ = −1.87 implies a change in tro-
phic transfer efficiency of 340% (0.34 vs. 0.1, or compensating 
changes in r, b or both). These two examples become even more 
concerning in the context of environmental gradients. As shown 
in Figure 5, the L2n method erroneously estimates a regression 
slope between λ and the environmental variable of ~−0.19, when 
the true slope is −0.25. In other words, the two slopes diverge by 
0.06 for every unit increase in the environmental variable. If we 
assume that the average λ bias between L2n and MLE is −0.13, 
then just two units of increase in the predictor variable would 
nearly double the size of the difference (0.13 + 2*0.06 = 0.25), 
predicting drastically different food web structures despite the 
same underlying data (individual body sizes). The fact that small 
changes in λ imply large changes in food web structure empha-
sizes the importance of estimating λ properly, particularly when 

(6)λ =
log10t

log10r
+ b − 1

F I G U R E  5  Distribution of relationship 
estimates (�env) when estimating from 
different known relationships.
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the changes are used to assess environmental impacts such as 
temperature (Pomeranz et  al., 2022) or overfishing (Jennings & 
Blanchard, 2004).

Although there were differences in the value of the empirical 
relationship parameters, they were in a consistent direction and 
of a similar magnitude. This suggests that previously reported 
changes in size-abundance relationships across environmen-
tal gradients and in experimental manipulations are plausible. 

However, the biases and inconsistencies in the estimates of both 
λ and environmental response parameters presented here suggest 
that it may be difficult if not impossible to directly compare the 
relative changes across different published studies which use dif-
ferent methods.

The publication of individual body size data with future stud-
ies of size-abundance relationships would greatly aid in our ability 
to generalize changes to this fundamental aspect of community 

F I G U R E  6  Estimates of change in exponent for size-abundance relationships across gradients from empirical data estimates. Panels (a) 
and (c) show the individual λ estimates for each site and the line shows the estimated relationship based on method (colour) for the natural 
pollution and temperature gradients, respectively. Panels (b) and (d) show the mean estimated relationship coefficient (�, point) ± 1 standard 
deviation (error bars) from the OLS model for both empirical data sets. All the methods estimate the same sign of the relationship, but the 
estimates from the binning methods are generally larger than the MLE estimates.
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organization across spatiotemporal scales and in response to envi-
ronmental conditions.

5  |  CONCLUSIONS

The MLE method outperformed binning methods under nearly 
any measure. With the publication of the sizeSpectra package 
(Edwards et al., 2020), and modifications available in other publicly 
available repositories (i.e. Pomeranz et al., 2022 GitHub repository: 
https://​github.​com/​Jpomz/​​Pomer​anz-​Junke​r-​Wesner), producing 
MLE estimates of size spectra parameters is a relatively easy task. 
Therefore, we recommend using it in all future studies of size-
abundance relationships rather than binning. There are some cir-
cumstances where data are only available in binned formats, and 
individual sizes are not recorded (for example many fishery data sets 
group body sizes into size class bins and count the occurrence). In 
these situations, we recommend using the MLEbin() function from 
the sizeSpectra package (Edwards et al., 2020), which specifically 
accounts for the uncertainty of placing individuals into a size class bin. 
One issue with MLE analysis of ISD relationships is that it is inherently 
a two step process, where site-specific λ's are estimated, and then a 
separate analysis needs to be performed on the λ estimates across 
a predictor variable. However, computational techniques could be 
developed which will allow for the simultaneous estimation of λ and 
the effects of predictor variables across gradients (for example, see 
Wesner et al., 2023 for a hierarchical Bayesian modelling framework). 
Likewise, there may be other situations that we have not covered di-
rectly in this study and we provide a decision tree (Figure 7) to help 
guide future analyses of size-abundance relationships.

We reiterate the recommendations of White et al. (2007), Sprules 
and Barth (2016) and Edwards et al. (2017) to estimate ISD's using 
MLE methods due to their superior performance in nearly every con-
text. Size spectra are an emergent property and depend on a number 
of internal processes. Even slight deviations in estimates of λ could 
have profound implications for interpretations of food web struc-
ture and patterns of community biomass distributions. Using MLE 
methods to estimate ISD parameters of communities will improve 
our understanding of these processes as well as aid in ecologists' 
ability to describe and predict the structure and organization of nat-
ural food webs and communities, as well as those which are affected 
by human activities. Furthermore, we strongly encourage authors 
to publish individual size data whenever possible. This will allow for 
the consistent re-analysis of existing data sets as methods develop 
and improve and will aid in the ability to synthesize results between 
research groups and across scales.
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250, 500, 750, 1000) and plotted the distribution of � estimates 
across the three � scenarios.

Figure S6. CI's and � estimates. CI's are colored if they contain the 
true value (blue) or if they do not (red). Only the first 500 replicates 
are displayed for visualization purposes.
Figure S7. CI's and � estimates when varying the known value of �.
Figure S8. CI's and � estimates when varying the scenario of � 
parameter space.
Table S1. Deviation of estimates across methods for different sample 
sizes of body size values.
Table S2. Deviation of estimates across methods when the values 
of the hypothetical gradient (large x) and the range of body sizes 
(small m) are changed compared with the results presented in the 
manuscript (main).
Table S3. Deviation of estimates across methods when the number 
of sites was changed.
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